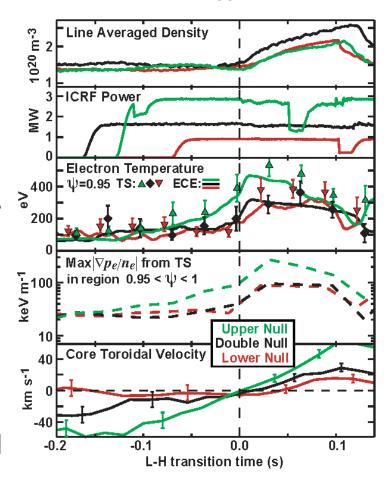

Alcator C-Mod Highlights, Plans, Budget and Schedule

OFES Budget Planning Meeting March 17, 2004

E. S. Marmar for the Alcator Group


^{*}Equilibrated electrons-ions, no core momentum/particle sources, RF I_p drive

Research Highlights

- Spontaneous rotation, momentum transport
 - Relations among SOL and core rotation, topology and H-mode threshold
 - Momentum transport in different regimes (L, H, EDA)
- Edge turbulence
 - Scale length dependence on v^* , detailed imaging of coherent structures and comparisons with models
 - Ballooning nature confirmed asymmetry drives SOL flows
- Error Fields and Locked Modes
 - Sensitivity, size & field scaling (ITER), control with external coils
- Progress understanding H-mode pedestal regulation through improved diagnosis and modeling
 - Radial localization of QC mode

Topology, Rotation, H-Mode Threshold Linked

B. LaBombard, et al., submitted to PRL (2004)

Research Highlights (continued)

- Dimensionless identity experiments suggest plasma physics dominance of pedestal structure
- Control of ITB location demonstrated
- ITB modeling elucidates mechanisms of formation (ITG suppression) and regulation (TEM modes)
- ICRF Mode Conversion at the Ion-ion Hybrid Layer (Experiment and Modeling)
- Current-drive phased operation of 4-strap antenna
 - Mode conversion current drive and heating
- Alfven Modes studied
 - Stable modes probed with active MHD spectroscopy
 - Unstable cascades observed and modeled

Appropriation Guidance

Institution	FY04	FY05	FY06
MIT	19,727	18,972	18,972
PPPL	2,070	2,050	2,050
U Texas	425	425	425
LANL	97	100	100
National Project Total	22,269	21,547	21,547
(run weeks)	(19)	(14)	(12)
5 Year Proposal	25,250	27,610	28,710
(run weeks)	(25)	(25)	(25)

Collaborations are Significant in all Aspects of the Program

Domestic Institutions

International Institutions

Princeton Plasma Physics Lab

U. Texas, Austin

U. Alaska

UC-Davis

UC-Los Angeles

UC-San Diego

Dartmouth U.

GA

LLNL

Lodestar

LANL

U. Maryland

MIT-PSFC Theory

Notre Dame U.

ORNL

SNLA

U. Wisconsin

Australian National University

Budker Institute, Novosibirsk

C.E.A. Cadarache

Chalmers U., Sweden

C.R.P.P. Lausanne

Culham Lab

IGI Padua

IPP Greifswald

IPP Garching

JET/EFDA

JT60-U, JFT2-M/JAERI

KFA Jülich

KFKI-RMKI Budapest

LHD/NIFS

Politecnico di Torino

U. Toronto

Theory and Modeling Collaborations

Transport, Turbulence and MHD

- Xu, Nevins, Rognlien, Umansky, R. Cohen: EDA H-mode QCM, Edge Fluctuations (BOUT simulations)
- Carreras, Antar : SOL turbulence analysis, L-H dynamics
- Guzdar: L-H threshold theory
- Hallatschek and Rogers: Theory and modeling
- Diamond: Theory
- Mikkelsen, Dorland: Critical gradient Non-linear stability
- Redi, Ernst, Bravenec, Dorland: GS2 microturbulence modeling
- Bateman and Kritz: Baldur transport simulations
- McCune, C.K. Phillips: TRANSP
- Chang, Chan, Coppi, Perkins, Shaing, White: Transport, RF induced rotation
- Huysmans, Wright: TAE modeling (CASTOR)
- Boswell, Sharapov, Breizman, Berk: Alfven cascades
- Brennan: NTM 3-D MHD modeling

Impurity and Particle Dynamics

- Stangeby, Lisgo, Elder: OSM-Eirene divertor plasma and neutral modeling
- Stotler: DEGAS II neutral transport
- Pigarov, Krasheninnikov: Edge atomic processes, 2-D edge transport modeling (UEDGE), Edge turbulence/structures
- Catto, Helander, Fulop: Neutral effects on rotation
- Parks: Pellet ablation dynamics
- Fournier: Atomic physics modeling

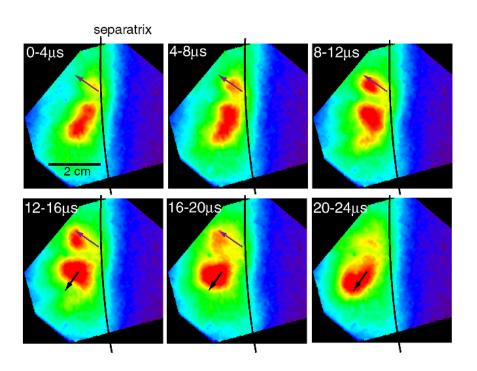
Theory and Modeling Collaborations (continued)

ICRF

- Jaeger, Myra and D'Ippolito: ICRF Flow Drive
- Brambilla, Jaeger, D'Azevedo, Batchelor, J. Wright: Fast wave and Bernstein waves in toroidal geometry
- McCune, C.K. Phillips, Okuda, Brambilla, J. Wright: Fullwave/Fokker Planck minority heating simulations
- R. Maggiora (Torino): TOPICA modeling of antenna-plasma system

Lower Hybrid

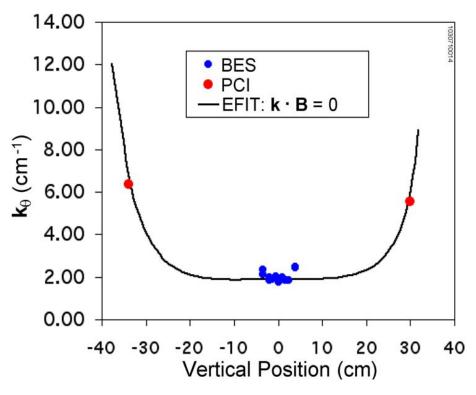
- C.K. Phillips, Okuda, J. Wright: 2D full wave simulations
- Peysson, Bers: Fokker Planck LHCD efficiency and distribution functions
- Harvey, Imbeaux: 2D LHCD Fokker Planck simulations
- Bernabei: Scenario development
- Bernabei: Launcher design and coupling simulations
- McCune, C.K. Phillips: Integration of ACCOME into TRANSP



PPPL Collaborations

- ICRF Physics and Technology (Schilling, Wilson, Hosea, Zweben, Brunkhorst)
- LHRF Physics and Technology (Bernabei, Wilson, Hosea, Schilling, Loesser)
- MSE (S. Scott)
- Edge Turbulence (Zweben)
- Fast particle dynamics (S. Scott, Zweben)
- X-ray spectroscopy (Bitter, Hill, Stratton)
- Single null/double null (Meade)
- Theory/modelling
 - Transport (Redi, Mikkelsen)
 - RF (C. Phillips)
 - Edge (Stotler)

Ultrafast TV images of edge fluctuations show bursty transport



U. Texas FRC Collaborations

- High resolution ECE T_e profiles (P. Phillips, A. Lynn)
 - L_{Te}, Internal modes and fluctuations, QC-mode
- Beam Emission Spectroscopy (R. Bravenec, M. Sampsell)
 - Turbulence, QC-mode
- Charge exchange recombination spectroscopy (W. Rowan)
 - T_i and rotation profiles
- DNB operation (Rowan, Sampsell, Bravenec)

Measurements of QC-Mode k_θ from BES and PCI in reasonable agreement

Experimental Collaborations

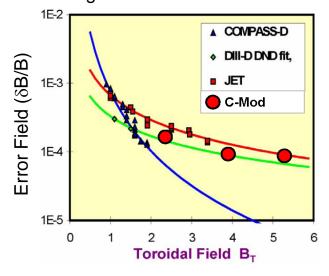
- Locked modes (LaHaye, GA; Hender, JET; Buttery, Culham)
- NTM Dimensionless Scaling with DIII-D (R. LaHaye, GA)
- Pedestal studies (Groebner, Osborne, GA; Suttrop, IPP Garching; Madison, Saibene, JET)
- EDA H-Mode (Madison, Saibene, JET; Oyama, JFT2-M; Suttrop, IPP Garching)
- Alfven Eigenmode studies (Fasoli, CRPP; Boswell, MIT/JET)
- ITB Physics (Stober, IPP Garching)
- ITER Hybrid Scenarios (Sips, IPP Garching)
- SOL Radial Transport (Kallenbach, IPP Garching; Whyte, U. Wisc.; Matthews, JET; Nakano, JT60-U)
- Fluctuation Studies (Grulke, Endler, IPP Greifswald; Zoletnik, KFKI-RMKI Budapest)
- Disruption Mitigation (Whyte, U. Wisc.)
- IR Imaging (Wurden, Furno, LANL)
- X-Ray Imaging (Peysson, CEA-Cadarache)
- Polarimetry (Brower, Peebles, UCLA)
- Spectroscopy (May, LLNL; Graf, UC-Davis; Griem, U. Md.; Howard, ANU; Kondo, NIFS)
- ICRF Technology (Goulding, Ryan, Rasmussen, ORNL)
- Boron-Nitride tile analysis (Wampler, SNLA)
- Tungsten Plasma Facing Components (Ulrickson, SNLA)
- Diagnostic Neutral Beam (Valisa, IGI Padua; Ivanov, Budker Institute)
- Tritium co-deposition (Whyte, U. Wisc.; Neu, IPP Garching)
- MDSplus: Help maintain worldwide (currently >25 installations)

ITPA Joint Experiments

C-Mod has Prominent Role in Education

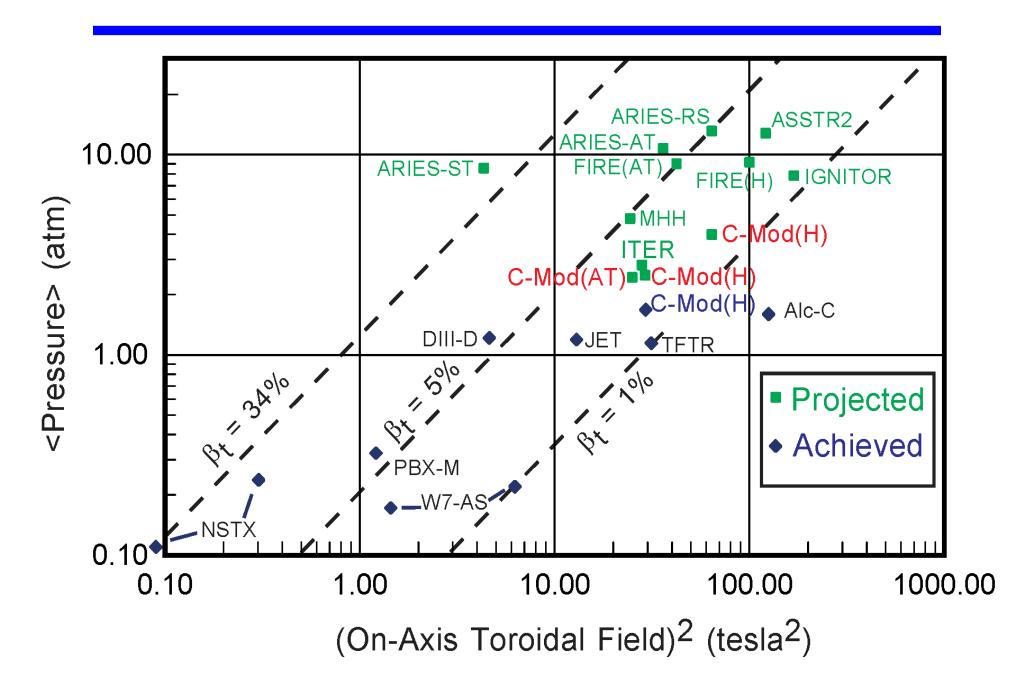
- Typically have ~20-25 graduate students doing their Ph.D. research on C-Mod
 - Nuclear Engineering, Physics and EECS (MIT)
 - Collaborators also have students working at the facility
 - Current total is 23
- MIT undergraduates participate through UROP program (~5 at any time)
- Host National Undergraduate Fusion Fellows every summer (3 in 2003)

C-Mod Addressing Critical ITER R&D



IPPA 3.2, 3.3

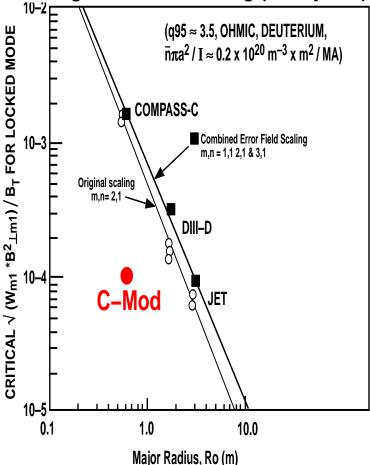
- Transport/Confinement with equilibrated electrons and ions
- Pedestal physics
 - small/no ELM regimes; scaling
- All metal plasma facing components
 - T retention, disruptions
 - Comparisons of molybdenum and tungsten
- Disruption Mitigation in high pressure plasma
- Rotation in the absence of direct momentum input
 - H-Mode dynamics; RWM stabilization
- Error fields and locked modes
 - size and field scaling
- NTM physics
 - direct stabilization; elimination of sawtooth seed
- ICRF heating/CD/flow: High field, weak single pass
- ICRF technology: load tolerance, antenna modeling
- Alfven Eigenmode physics
- AT physics toward steady state



B-scaling of Locked-Mode Threshold

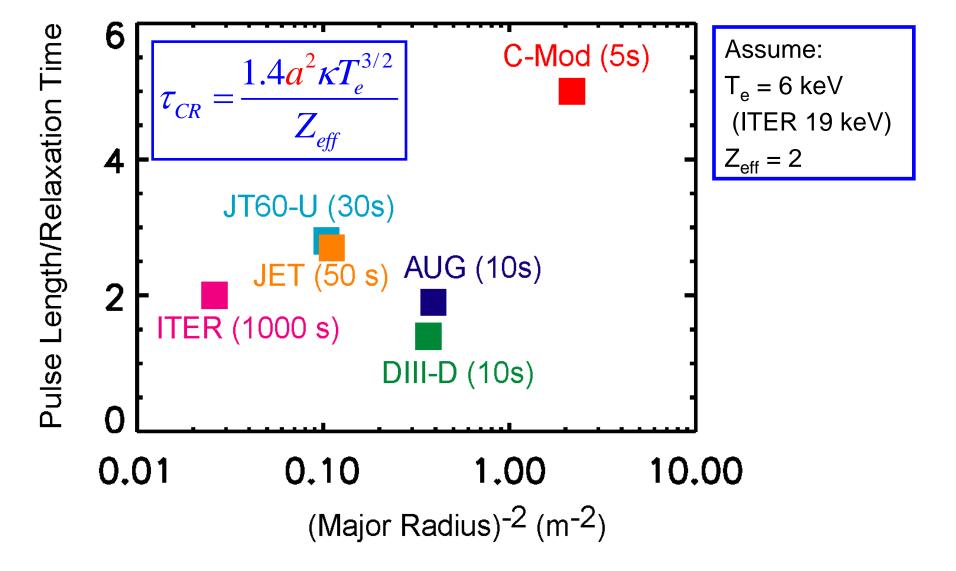
C-Mod can study plasmas at the same β and magnetic field as ITER

C-Mod Addressing High Priority ITPA Research Topics


- ITB and Transport
 - High performance with equilibrated electrons-ions
 - Impurity accumulation
 - Compatibility with edge conditions (density, small/no ELM regimes)
 - Test simulation predictions (GS2, gyro, BOUT)
- Important contributions to Confinement Databases (size, field)
- Pedestal and Edge
 - Pedestal structure (identity experiments, modeling)
 - Physics-based scaling
 - Small/no-ELM regimes
- Divertor and SOL
 - SOL plasma interaction with main chamber (pioneered at C-Mod)
 - Hydrogen retention processes (Metal PFC's)
 - Perpendicular SOL transport and boundary conditions

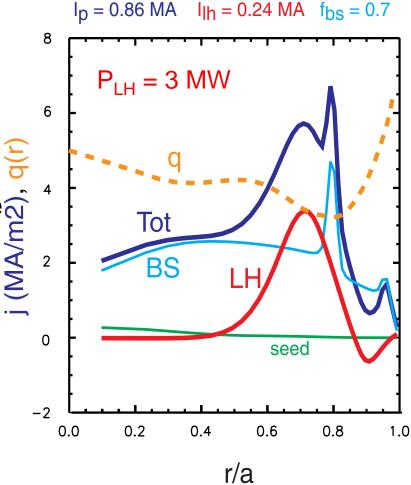
C-Mod Actively Participating in Joint Experiments Coordinated through ITPA

- Confinement scaling in ELMy H-modes (JET)
- Ohmic identity experiments: scaling with dimensionless parameters
- Transport properties of candidate hybrid scenarios
- High performance operation with T_e ~ T_i
- Enhanced confinement with low external momentum input
- Dimensionless identity pedestal experiments (JET)
- Dimensionless comparisons of L-H threshold and pedestals (ASDEX-U)
- Comparisons between C-Mod EDA and JFT-2M HRS
- Scaling of SOL radial transport
- Disruptions and effects on materials choices
- Role of Lyman absorption in the divertor
- Parallel transport in SOL
- Multi-machine study on separatrix density and edge profiles
- Deposition in tile gaps
- Pressure and size scaling of gas jet penetration for disruption mitigation
- NTM's including error field effects
- Error field sideband effects for ITER (C-Mod, JET, DIII-D identity experiments)
- Preparation of ITER steady-state scenario
- Preparation of ITER hybrid scenario


Locking Threshold Scaling (LaHaye 97)

AT Physics: C-Mod Positioned to Study Fully Relaxed Current Profiles IPPA 3.1

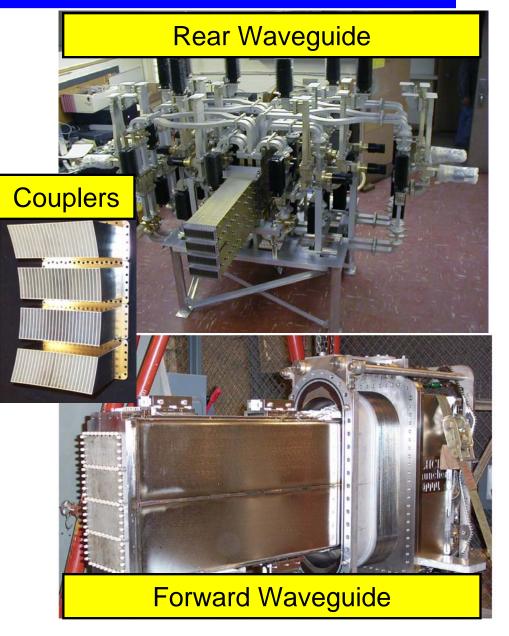
 Normalized pulse-length longer than any other operating high power divertor tokamak


AT Operation likely needed for Successful ITER Quasi-Steady-State

Requirements

- Efficient off-axis current drive $(r/a \ge 0.7)$
- Confinement (control of edge + internal transport)
- Impurity Control
 - L-mode or EDA/ELMy H-Mode edge
 High heat-flux divertor
- Efficient heating (ICRF + LH)
- Density and density profile control
 - Active pumping, RF control

ACCOME scenario: Fully non-inductive, 70% bootstrap fraction, $H_{gap} \approx 2.5$

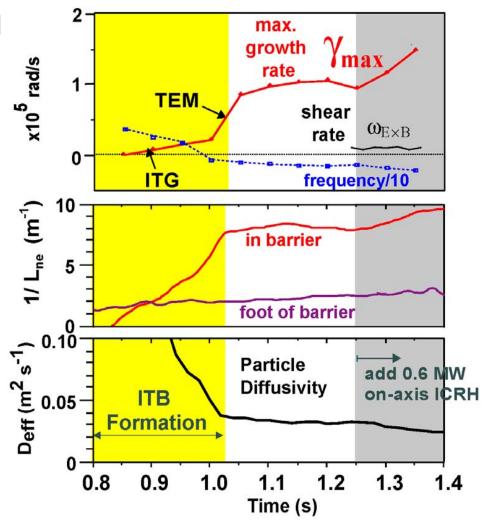

Lower Hybrid Current Drive Facility Upgrade First Operation: Summer 2004

- Waveguide components assembled
 - Waveguides passed full power tests
 - Installation: May, 2004
- Major PPPL contributions



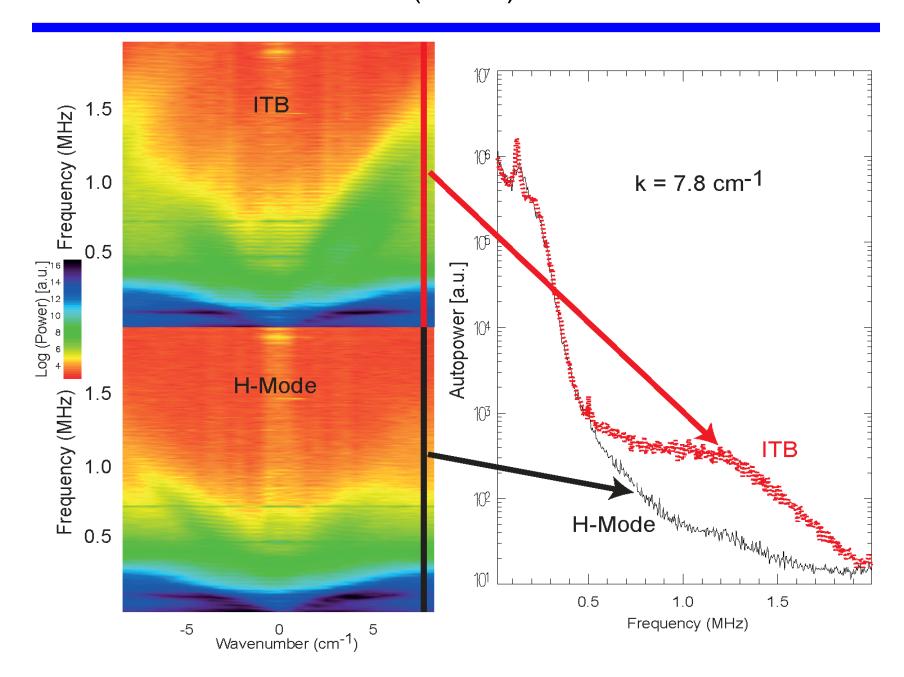
Klystrons (4.6 GHz, 3 MW) Installed & Tested

ITB with strong on-axis heating leads to large core pressure gradients


Transport: Areas of Focus

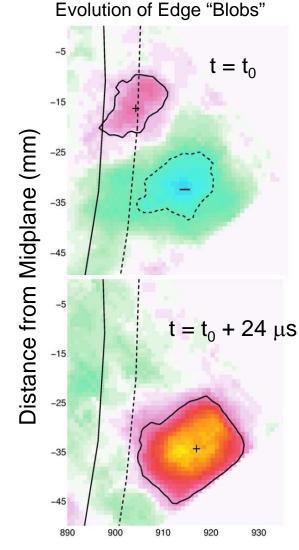
IPPA 1.1

- Self-generated flows/momentum transport
 - Especially connections to L/H transition
- Access and control for ITBs in reactor-relevant regimes
 - Absence of core particle & momentum sources
 - Strongly coupled electrons-ions
 - Pulse length > skin time
- H-Mode pedestal
 - Width, gradient relaxation
 - Small/no-ELM regimes
- Particle transport
- Core Fluctuations
- Close and careful comparisons with theory/modeling in all areas


GS2 Modeling shows roles of ITG and TEM in formation and evolution of ITBs

Darin Ernst, et al., APS-DPP Invited (2003)

Phase Contrast Imaging Shows Growing High v, High k Turbulence in ITB Plasma (TEM?)

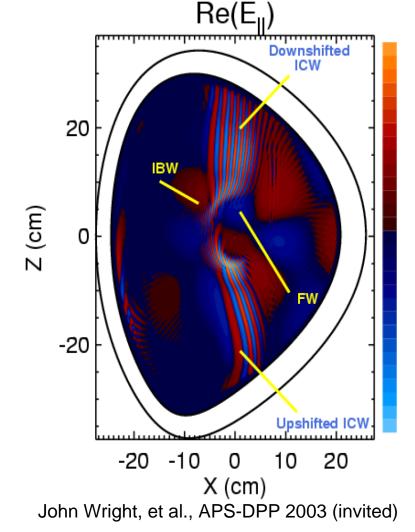


Science/Technology: Edge/Divertor

IPPA 1.4

- Edge Turbulence and Transport
 - Ballooning transport drives parallel flows
 - Turbulence dynamics
 - Filaments accelerate across SOL
 - Correlations support filament formation mechanism
 - Transport in the far SOL matched from C-Mod through DIII-D to JET
- Neutral Dynamics in high-Z PFC tokamak
 - Hydrogenic retention 100x lower than with C walls
 - Modelling of ITER-like C-Mod divertor finally close to experiment
- Power & Particle Control
 - Tungsten brush (ITER relevant)
 - New divertor configuration for optimized pumping

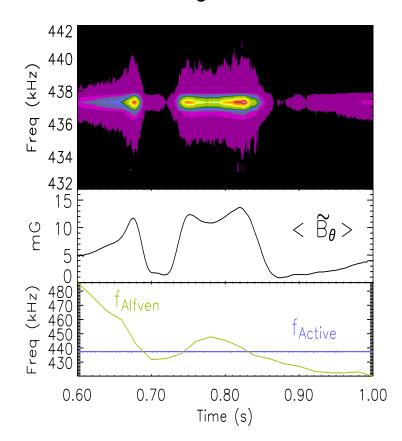
Major Radius (mm)
Olaf Grulke, et al., APS-DPP (2003)


Science/Technology: ICRF

IPPA 1.3

- High-Power Phased Antenna Operation
 - ITER technology development
- Weak single-pass (e.g. D(³He)) scenarios
- Minority Ion-driven Alfven modes
- Mode Conversion
 - Flow drive
 - Current drive
- Sawtooth stabilization
 - Mode Conversion and Minority
- Unique core RF Diagnostic (PCI)
- Strong, integrated theory and modeling effort

Full-wave simulation of Mode-Conversion in C-Mod Discharge


MHD Stability Research

IPPA 1.2

- Disruption studies
 - Extend to 2 MA, 8 T
 - High pressure gas-jet mitigation
 - ITER-level plasma pressure
- Locked-modes: characterization and control
- Alfven and global modes
 - Probe stable modes with active MHD
- MHD at high β
 - NTM's, Core β -limiting modes
- Pedestal stability
 - H-Mode edge pedestal stability
 - Understanding ELM regimes:
 - comparisons with theory/simulation
 - Compare single/double null

Active MHD Probing of Stable Alfven Eigenmodes

Joe Snipes, et al., APS-DPP 2003

New Tools enable New Discoveries

- LHCD experiments begin in CY2004
 - 3 MW source @ 4.6 GHZ + 8 MW source ICRF (04)
 - 4 MW source @ 4.6 GHz + 8 MW source ICRF (07)
 - Add second LH launcher (06), new 4-strap ICRF antenna (07)
- New facility and diagnostic upgrades (partial list)
 - Locked-mode coils; Cryopump (n_e control); Divertor upgrades (advanced materials); Real-time antenna matching; Longpulse DNB; High-P Gas Puff (disruption mitigation)
 - Hard X-ray imaging (LHCD); Reflect. upgrades (higher n_e); Polarimetry (j(r)); CXRS upgrades; PCI upgrades (spatial coverage, $ρ_e$ scale); Ultra-fast Imaging (\tilde{n}, \tilde{T}); Erosion/deposition divertor diagnostics, Neut. Part. Analyzer

Guidance Budgets Imply Significant Reduction in Facility Research Run Time

Guidance Budgets

Fiscal Year	2003	2004	2005	2006
Run Weeks	13	19	14	12
Run Hours	400	600	450	390

10% Increment in 2005

Fiscal Year	2003	2004	2005	2006
Run Weeks	13	19	21	18
Run Hours	400	600	670	600

10% Decrement in 2005 or 2006:

Fiscal Year	2003	2004	2005	2006
Run Weeks	13	19	11	10
Run Hours	400	600	350	320

Alcator C-Mod Overview Schedule (March 2004)

Calendar Year	2003 2004 2005 2006
Operations (4 9 11 6 2 8 6 12
Adv. Tok.	ITB Studies Flow Drive LHCD 3 sec
	n-control, power, long pulse Active n-control, j-control
Burn Plasma	Double Null 2MA, 8T Sawtooth stab 6MW, H ₈₉ ≥ 2, Z _{eff} ≤ 1.5
Support	Inner-Wall limited I-rise opt Disruption Mitigation Power/Part Handling
Transport	Transient Transp. Shear/Flows Self Org. Crit. Zonal/GAM flows
	Barrier Physics Momentum Transport Electron Transp.
Edge/Divertor	T _e , n _e Fluct. Inner SOL Fluct. Impurity Sources & Transp.
Lage/Divertor	Neutral Physics Rotation/Topology/H-mode Pumping/Particle Control Power Handling
RF	LH Propagation LHCD Compound Spect
KF	MCICW/MCIBW/MCCD Load-Tol Ant. (1) ω < ω _{Ci}
MILID	Ped. Stab. Locked-Modes 2MA Disruption Mitigation NTM
MHD	Active MHD (Global modes)
	3 MW LH 2nd Launcher, 4 MW LH
	8 MW ICRF, 3 Antennas Real-time matching (proto.)
Facility	Inner Div Up IWS Probe Cryopump/Up. Div.
r acinty	W Brush Proto Advanced Materials
	RFX Beam CXRS, MSE, BES Long Pulse Beam
Diagnostics	Active MHD Ant. NPA Hard X-Ray Imaging Ultra-fast CCD Camera
	Edge Fluctuation Imaging PCI Upgrade Polarimetry
	Tang. HIREX ECE Radiometer

Research Goals (FY04-FY06)

Plasma flow control with radio waves (MC-ICRF)	SEP 2004
Sensing approach to instability using active coils	SEP 2004
Commissioning of the microwave current drive system (LHRF)	SEP 2004
Driving electric current with radio waves (MC-ICRF)	SEP 2004
Power and particle handling for Advanced Tokamak plasmas	SEP 2004
Current profile control with microwaves (LHCD)	FY 2005
Sustaining plasma current without a transformer	FY 2006

Highest Priority Upgrades Included in Guidance Budgets (FY05-06)

- Cryopump (density control for AT, lower v for BPX support)
- Correction coil supply upgrades (Error field comp.)
- LHCD:
 - Construction, installation of second launcher
 - Add 4th MW
- ICRF real-time matching (1 antenna only)
- New Diagnostics and Upgrades
 - Thomson scatt., Polarimetry, IR imaging, core and edge turbulence
- DAC infrastructure upgrades (data collection doubling time ~2 years)

Consequences of 10% Cut (FY2005)

- 3 week reduction in research operation (to 11)
- Personnel cuts:
 - 1 scientist, 2 engineer, 2 technicians, 1 student
- Critical upgrades deferred
 - LHCD
 - Advanced 4-strap ICRF antenna
 - Outer divertor upgrade (power handling)
 - Polarimeter/Interferometer (j(r) at high density; ITER geometry)

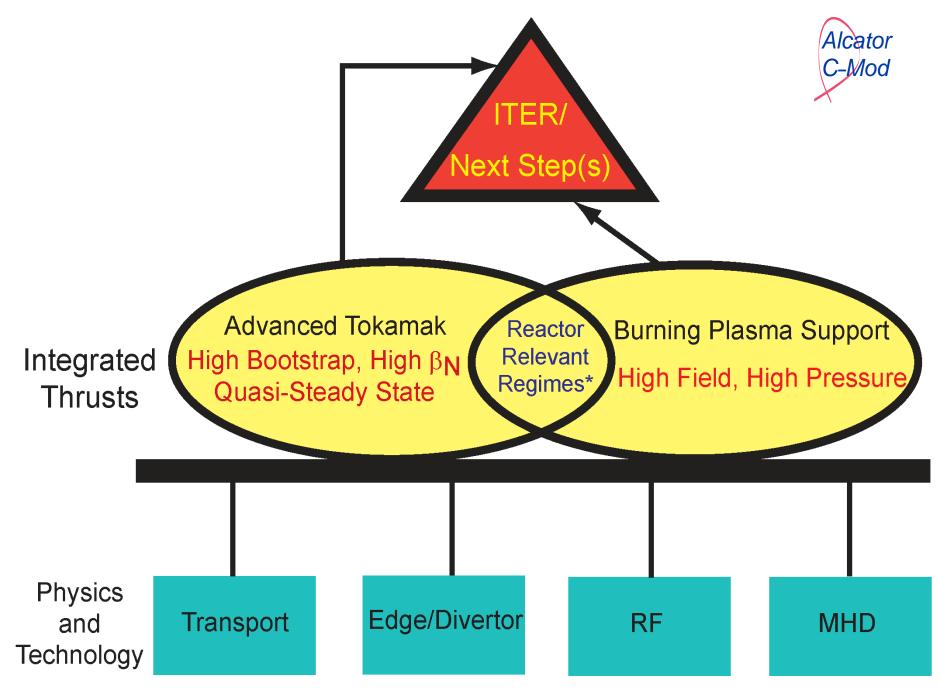
Highest Priority Increments (FY05B)

- Improved utilization: 7 additional weeks research operation (to 21 total) (1500k)
- 4-strap ICRF antenna to maintain full capability with additional LHCD launcher (350k)
- Spare 4.6 GHz Klystron (currently 1 spare, 16 klystron system) (500k)
- Core Thomson scattering upgrade (spatial channels) (150k)
- Active MHD upgrade (toroidal mode number control) (50k)
- ICRF real-time matching (2nd antenna) (350k)
- Outer divertor upgrade (power handling >8MW, 5 s) (200k)
- Full utilization: 4 additional weeks research operation (to 25 total) (900k)

Consequences of 10% cut in FY06

- 2 week reduction in research operation (to 10)
- Further personnel reductions
 - 1 Engineer, 1 Tech, 2 Scientists, 1 Student
- Reduced pace for LHCD upgrades
 - at least 6 month delay in implementation
- Polarimeter deferred
- Tungsten divertor delayed
- Real-time ICRF matching deferred
- Outer divertor upgrade delayed

Highest Priority Increments (FY06B)


- Add 6 weeks of research operation, to 18 weeks (1400k)
- 4-strap antenna (complete and install to maintain full capability (400k)
- Spare 4.6 GHz klystron
- Add 3 weeks research operation, to 21 weeks
- High resolution x-ray diag upgrades (additional tangential views)
 (100k)
- Complete outer divertor upgrade (300k)
- Complete ICRF real-time matching (350k)
- Add second view for MSE (direct E_r) (400k)
- ICRF cavity conversions (fixed to tunable) (350k)
- Advanced material divertor (ITER/BP tungsten) (500k)
- Core fluctuation scattering diag (complete in FY07) (300k)
- Full utilization: add 4 weeks research operation, to 25 weeks (950k)

C-Mod National Budgets (k\$, Mar 2004 Guidance)

	FY04	FY05A	FY05B	FY06A	FY06B
	Approp	Guidance	Prog Plan	Level	Prog Plan
Research	5,950	5,969	6,631	5,969	7,278
Operations	13,344	12,500	16,234	12,500	17,486
Capital Equipment	190	307	399	307	407
International Collaborations	47	47	47	47	47
MDSplus	146	149	149	149	149
PPPL Collaborations	2,070	2,050	2,250	2,050	2,250
U. Tx. FRC Collaborations	425	425	480	425	480
LANL Collaborations	97	100	120	100	120
Alcator Project Total	22,269	21,547	26,310	21,547	28,217

		FY04	FY05	FY05	FY05	FY06	FY06	FY06
		Approp	Guidance	Prog Plan	-10%	-10%	Flat	Prog Plan
Funding (\$ Thousands)								
Research		5,950	5,969	6,631	5,622	5,622	5,969	7,278
Facility Operations		13,344	12,500	16,234	11,000	11,000	12,500	17,486
Research Capital Equipr	nent	190	207	299	186	186	207	307
Operations Capital Equip	oment	0	100	100	90	90	100	100
PPPL Collaborations		2,070	2,050	2,250	1,845	1,845	2,050	2,250
UTx Collaborations		425	425	480	383	383	425	480
LANL Collaborations		97	100	120	90	90	100	120
International Activities		47	47	47	42	42	47	47
MDSplus		146	149	149	134	134	149	149
Total (inc. Internationa	al)	22,269	21,547	26,310	19,392	19,392	21,547	28,217
Staff Levels (FTEs)								
Scientists & Engineers		49.38	48.93	54.43	45.73	44.73	48.43	52.64
Technicians		30.28	28.28	32.28	26.08	24.28	26.28	32.58
Admin/Support/Clerical/0	OH	16.27	15.46	17.08	13.91	13.82	15.33	17.24
Professors		0.25	0.25	0.25	0.25	0.25	0.25	0.25
Postdocs		2.00	3.00	3.00	3.00	2.00	3.00	3.00
Graduate Students		22.05	22.05	22.05	20.05	19.00	22.05	22.05
Industrial Subcontractors	3	1.20	1.00	1.00	1.00	1.00	1.00	1.00
Total		121.44	118.98	130.10	110.03	105.09	116.35	128.77
	FY03	FY04			FY05	FY06	FY06	FY06
	Actual	Approp	Guidance	Prog Plan	-10%	-10%	Flat	Prog Plan
Facility Run Schedule	10					10		
Scheduled Run Weeks	13	19	14	25	11	10	12	25
Users (Annual)								
Host	53	56			53	51	53	60
Non-host (US)	90	95			90	85	90	95
Non-host (foreign)	10	12	10		10	10	10	18
Graduate students	24	25			23	21	24	
Total Users	153	163	157	188	176	167	153	173
Operations Staff (Annual)							
Host	68	71	69	80	66	GE.	67	90
Non-host	4					65		80
Total Operations Staff		75			70	68	71	5 85

^{*}Equilibrated electrons-ions, no core momentum/particle sources, RF I_p drive